Официальный фонд Г.С. Альтшуллера

English Deutsch Français Español
Главная страница
Карта сайта
Новости ТРИЗ
E-Книга
Термины
Работы
- ТРИЗ
- РТВ
- Регистр идей фантастики
- Школьникам, учителям, родителям
- ТРТЛ
- О качестве и технике работы
- Критика
Форум
Библиография
- Альтшуллер
- Журавлева
Биография
- Хронология событий
- Интервью
- Переписка
- А/б рассказы
- Аудио
- Видео
- Фото
Правообладатели
Опросы
Поставьте ссылку
World

распечатать









   

АЛГОРИТМ РЕШЕНИЯ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ АРИЗ-85-В

ПРИЛОЖЕНИЕ 4

ЗАДАЧА ОБ ОБНАРУЖЕНИИ ЧАСТИЦ

СИТУАЦИЯ
Для многих целей нужны жидкости особой оптической чистоты, содержащие минимальное количество нерастворимых примесей. Крупные частицы можно обнаружить по отражению света. Однако мелкие пылинки (диаметром до 300 ангстрем) известными оптическими методами обнаружить не удается: света (даже лазерного) они отражают слишком мало. 

Нужен оптический способ, позволяющий определить, есть ли в жидкости мельчайшие пылинки и сколько их. 

Пылинки немагнитные, сделать их магнитными нельзя. 

РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для наблюдения частиц, взвешенных в жидкости оптической чистоты, включает жидкость и частицы. ТП-1: если частицы малы, жидкость остается оптически чистой, но частицы невозможно наблюдать невооруженным глазом. ТП-2: если частицы большие, они хорошо наблюдаемы, но жидкость перестает быть оптически чистой, а это недопустимо. Необходимо при минимальных изменениях в системе обеспечить возможность наблюдения частиц невооруженным глазом. 

Шаг 1.2. Конфликтующая пара. Изделие - частицы. Инструмент-глаз (это плохой, неменяемый инструмент). 

Шаг 1.3. Схемы ТП: 

ТП-1: размеры частиц малы

 

ТП-2: размеры частиц велики

 


Шаг 1.4. Выбор ТП. ТП-2 - это формальное ТП, приведенное в соответствии с примечанием 3. Поэтому и выбор ТП в этой задаче формален: по условиям задачи мы обязаны выбрать ТП-1. 

Шаг 1.5. Усиление ТП. Надо увидеть еще более мелкие частицы, например инородные молекулярные включения. 

Шаг 1.6. Модель задачи. Даны мельчайшие частицы в жидкости. Мельчайшие частицы, хотя и не портят жидкость, абсолютно невидимы невооруженным глазом. Необходимо ввести икс-элемент, который, не воздействуя вредно на жидкость, делал бы заметными мельчайшие частицы. 

Шаг 1.7. Применение стандартов. После формулировки модели задачи суть конфликта свелась к тому, что в систему надо ввести какие-то добавки, и в то же время нельзя вводить ничего. Ясно, что эти добавки должны быть не инородными, а своими - "оптически-жидкостными". "Своя" добавка - это вариация оптической жидкости, получаемой по стандартам 5.1.1.9, 5.5.1. Однако для показа работы АРИЗ мы продолжим анализ по алгоритму. 

Шаг 2.1.Оперативная зона. Поверхность мельчайшей частицы и "околочастичное пространство". 

Шаг 2.2. Оперативное время. Т1 - время наблюдений, Т2 - время до наблюдений. 

Шаг 2.3. Вещественно-полевые ресурсы.
Внутрисистемные ВПР:
  1. глаз, 
  2. частицы. 
Внешнесистемные ВПР: 
  1. оптическая жидкость. 
Надсистемные ВПР: 
  1. воздух. 

Шаг  3.1. ИКР-1. Икс-элемент, абсолютно не усложняя систему и не портя оптической жидкости, в течение 0В (времени наблюдений) в пределах 03 делает частички видимыми. 

Шаг 3.2. Усиленный ИКР. Так как инструмент (глаз) неменяем, то по примечанию 24 икс-элемент надо заменить на элемент внешней среды: оптическая жидкость сама делает частицы видимыми. 

Шаг 3.3. ФП на макроуровне. Жидкость должна увеличивать частицы, чтобы они были видимыми, и не должна увеличивать частицы, потому что она не обладает такими свойствами по условиям задачи. 

Шаг 3.4. Микро-ФП. Оптическая жидкость должна содержать в себе "увеличительные" ("отличительные") частицы, чтобы делать мельчайшие частицы видимыми, и не должна содержать инородных ("увеличительных", "отличительных") частиц, потому что они загрязняют оптическую жидкость. 

Шаг 3.5. ИКР-2. 03 (жидкость в "околочастичном" пространстве) в течение 0В (времени наблюдений) должна сама обеспечивать наличие (появление) в себе "увеличительных" частиц, которые после наблюдения должны исчезать. 

Шаг 4.5. Производные ВПР. Задача четко решается на этом шаге применением веществ, производных от оптической жидкости. Такими веществами являются "газ оптической жидкости" и "лед оптической жидкости". 

Контрольный ответ. Оптическую жидкость импульсно нагревают, получая перегретую жидкость. Мельчайшие частицы в ней играют роль центров закипания, и на них образуются пузырьки. Жидкость находится под небольшим вакуумом, и пузырьки начинают быстро расти. Фотографируя их, получают информацию о самих частицах (Химия и жизнь. 1975. № 4. С. 66). Абсолютный аналог - пузырьковая камера, в которой тоже работает нагретая жидкость. 

Теоретически подходит и второй путь - замораживание: мельчайшие частицы будут играть роль центров кристаллизации. Но насколько такие центры наблюдаемы, без экспериментов с конкретными жидкостями сказать трудно. 

Пузырьки в жидкости можно получить не только импульсным нагревом - охлаждением, но и импульсным сбросом давления. 

ПРИМЕР 
А.с. 479030: "Способ определения момента появления твердой микрофазы в жидкостях путем пропускания через жидкость ультразвукового излучения, отличающийся тем, что, с целью повышения точности определения, амплитуду давления пропускаемого излучения выбирают ниже кавитационной прочности жидкости и регистрируют появление твердой микрофазы по возникновению кавитационной области".

[ << Приложение 3. ] [ ОГЛАВЛЕНИЕ ] [ >> Приложение 5. ]